Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass

نویسندگان

  • C. J. Gilbert
  • R. O. Ritchie
  • W. L. Johnson
چکیده

The recent development of metallic alloy systems which can be processed with an amorphous structure over large dimensions, specifically to form metallic glasses at low cooling rates ~;10 K/s!, has permitted novel measurements of important mechanical properties. These include, for example, fatigue-crack growth and fracture toughness behavior, representing the conditions governing the subcritical and critical propagation of cracks in these structures. In the present study, bulk plates of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy, machined into 7 mm wide, 38 mm thick compact-tension specimens and fatigue precracked following standard procedures, revealed fracture toughnesses in the fully amorphous structure of K Ic;55 MPaAm, i.e., comparable with that of a high-strength steel or aluminum alloy. However, partial and full crystallization, e.g., following thermal exposure at 633 K or more, was found to result in a drastic reduction in fracture toughness to ;1 MPaAm, i.e., comparable with silica glass. The fully amorphous alloy was also found to be susceptible to fatigue-crack growth under cyclic loading, with growth-rate properties comparable to that of ductile crystalline metallic alloys, such as high-strength steels or aluminum alloys; no such fatigue was seen in the partially or fully crystallized alloys which behaved like very brittle ceramics. Possible micromechanical mechanisms for such behavior are discussed. © 1997 American Institute of Physics. @S0003-6951~97!03730-3#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fracture Toughness Study on Bulk Metallic Glasses and Novel Joining Method Using Bulk Metallic Glass Solder

The fracture toughness of three new compositional variants of the Zr-Ti-Be-LTM (Late Transition Metal) family of bulk metallic glasses (BMG’s) are studied in the as-cast and annealed condition. Quaternary Zr-Ti-Cu-Be alloys consistently had linear elastic fracture toughness values greater than 80 MPa·m, while Vitreloy 1, a Zr-Ti-Cu-Ni-Be alloy, had an average fracture toughness of 48.5 MPa·m wi...

متن کامل

Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions

Results are presented for a ductile metal reinforced bulk metallic glass matrix composite based on glass forming compositions in the Zr-Ti-Cu-Ni-Be system. Primary dendrite growth and solute partitioning in the molten state yields a microstructure consisting of a ductile crystalline Ti-Zr-Nb beta phase, with bcc structure, in a Zr-Ti-Nb-Cu-Ni-Be bulk metallic glass matrix. Under unconstrained m...

متن کامل

Reduced Fracture Toughness of Metallic Glass at Cryogenic Temperature

The effects of cryogenic temperature on the toughness of a Zr-based metallic glass are investigated. Based on three-dimensional fracture morphologies at different temperatures, the crack formation and propagation are analyzed. Through the calculation of the shear transformation zone volume, the shear modulus and bulk modulus of the metallic glass at different temperatures and the crack formatio...

متن کامل

Mechanisms for Fracture and Fatigue-Crack Propagation in a Bulk Metallic Glass

The fracture and fatigue properties of a newly developed bulk metallic glass alloy, Zr41.2Ti13.8Cu12.5 Ni10Be22.5 (at. pct), have been examined. Experimental measurements using conventional fatigue precracked compact-tension C(T) specimens (,7-mm thick) indicated that the fully amorphous alloy has a plane-strain fracture toughness comparable to polycrystalline aluminum alloys. However, signific...

متن کامل

Ti-based Bulk Metallic Glasses for Biomedical Applications

Biomedical materials can improve the life quality of a number of people each year. The range of applications includes such as joint and limb replacements, artificial arteries and skin, contact lenses, and dentures. So far the accepted biomaterials include metals, ceramics and polymers. The metallic biomaterials mainly contain stainless steel, Co-Cr alloys, Titanium and Ti-6Al-4V. Recently, bulk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997